1. Mobile Communications Principles
Each mobile uses a separate, temporary radio channel to talk to the cell site. The cell site talks to many mobiles at once, using one channel per mobile. Channels use a pair of frequencies for communication one frequency (the forward link) for transmitting from the cell site and one frequency (the reverse link) for the cell site to receive calls from the users. Radio energy dissipates over distance, so mobiles must stay near the base station to maintain communications. The basic structure of mobile networks includes telephone systems and radio services. Where mobile radio service operates in a closed network and has no access to the telephone system, mobile telephone service allows interconnection to the telephone network.
Early Mobile Telephone System Architecture
Traditional mobile service was structured in a fashion similar to television broadcasting: One very powerful transmitter located at the highest spot in an area would broadcast in a radius of up to 50 kilometers. The cellular concept structured the mobile telephone network in a different way. Instead of using one powerful transmitter, many low-power transmitters were placed throughout a coverage area. For example, by dividing a metropolitan region into one hundred different areas (cells) with low-power transmitters using 12 conversations (channels) each, the system capacity theoretically could be increased from 12 conversations or voice channels using one powerful transmitter to 1,200 conversations (channels) using one hundred low-power transmitters. Figure 2 shows a metropolitan area configured as a traditional mobile telephone network with one high-power transmitter.
2. Mobile Telephone System Using the Cellular Concept
Interference problems caused by mobile units using the same channel in adjacent areas proved that all channels could not be reused in every cell. Areas had to be skipped before the same channel could be reused. Even though this affected the efficiency of the original concept, frequency reuse was still a viable solution to the problems of mobile telephony systems.
Engineers discovered that the interference effects were not due to the distance between areas, but to the ratio of the distance between areas to the transmitter power (radius) of the areas. By reducing the radius of an area by 50 percent, service providers could increase the number of potential customers in an area fourfold. Systems based on areas with a one-kilometer radius would have one hundred times more channels than systems with areas 10 kilometers in radius. Speculation led to the conclusion that by reducing the radius of areas to a few hundred meters, millions of calls could be served.
The cellular concept employs variable low-power levels, which allow cells to be sized according to the subscriber density and demand of a given area. As the population grows, cells can be added to accommodate that growth. Frequencies used in one cell cluster can be reused in other cells. Conversations can be handed off from cell to cell to maintain constant phone service as the user moves between cells.
The cellular radio equipment (base station) can communicate with mobiles as long as they are within range. Radio energy dissipates over distance, so the mobiles must be within the operating range of the base station. Like the early mobile radio system, the base station communicates with mobiles via a channel. The channel is made of two frequencies, one for transmitting to the base station and one to receive information from the base station.
---------------------------------------------------------------------
Source : gsmfavorites
Cellular Communications |
Early Mobile Telephone System Architecture
Traditional mobile service was structured in a fashion similar to television broadcasting: One very powerful transmitter located at the highest spot in an area would broadcast in a radius of up to 50 kilometers. The cellular concept structured the mobile telephone network in a different way. Instead of using one powerful transmitter, many low-power transmitters were placed throughout a coverage area. For example, by dividing a metropolitan region into one hundred different areas (cells) with low-power transmitters using 12 conversations (channels) each, the system capacity theoretically could be increased from 12 conversations or voice channels using one powerful transmitter to 1,200 conversations (channels) using one hundred low-power transmitters. Figure 2 shows a metropolitan area configured as a traditional mobile telephone network with one high-power transmitter.
2. Mobile Telephone System Using the Cellular Concept
Interference problems caused by mobile units using the same channel in adjacent areas proved that all channels could not be reused in every cell. Areas had to be skipped before the same channel could be reused. Even though this affected the efficiency of the original concept, frequency reuse was still a viable solution to the problems of mobile telephony systems.
Engineers discovered that the interference effects were not due to the distance between areas, but to the ratio of the distance between areas to the transmitter power (radius) of the areas. By reducing the radius of an area by 50 percent, service providers could increase the number of potential customers in an area fourfold. Systems based on areas with a one-kilometer radius would have one hundred times more channels than systems with areas 10 kilometers in radius. Speculation led to the conclusion that by reducing the radius of areas to a few hundred meters, millions of calls could be served.
The cellular concept employs variable low-power levels, which allow cells to be sized according to the subscriber density and demand of a given area. As the population grows, cells can be added to accommodate that growth. Frequencies used in one cell cluster can be reused in other cells. Conversations can be handed off from cell to cell to maintain constant phone service as the user moves between cells.
The cellular radio equipment (base station) can communicate with mobiles as long as they are within range. Radio energy dissipates over distance, so the mobiles must be within the operating range of the base station. Like the early mobile radio system, the base station communicates with mobiles via a channel. The channel is made of two frequencies, one for transmitting to the base station and one to receive information from the base station.
---------------------------------------------------------------------
Source : gsmfavorites
0 comments:
Post a Comment